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I. Thermodynamic relations and numerical aigoritlims 
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Abstract. Thermodynamic and mathematical relations are 
presented to facilitate the description of an algorithm for 
the calculation of chemical mass transfer in magmatic sys- 
tems. This algorithm extends the silicate liquid solution 
model of Ghiorso et al. (1983) to allow for the quantitative 
modelling of natural magmatic processes such as crystal 
fractionation, equilibrium crystallization, magma mixing 
and solid-phase assimilation. The algorithm incorporates 
a new method for determining the saturation surface of 
a non-ideal multicomponent solid-solution crystallizing 
from a melt. It utilizes a mathematical programming (opti- 
mization) approach to determine the stable heterogeneous 
(solids + liquid) equilibrium phase assemblage at a particu- 
lar temperature and pressure in magmatic systems both 
closed and open to oxygen. Closed system equilibria are 
computed by direct minimization of the Gibbs free energy 
of the system. Open system equilibria are determined by 
minimization of the Korzhinskii potential (Thompson 
1970), where oxygen is treated as a perfectly mobile compo- 
nent. Magmatic systems undergoing chemical mass transfer 
processes are modelled in a series of discrete steps in temper- 
ature, pressure or bulk composition, with each step charac- 
terized by heterogeneous solid-liquid equilibrium. A numer- 
ical implementation of the algorithm has been developed 
(in the form of a FORTRAN 77 computer program) and 
calculations demonstrating its utility are provided in an ac- 
companying paper (Ghiorso and Carmichael 1985). 

Introduction 

This paper is the first in a series that will attempt to describe 
various aspects of chemical mass transfer in magmatic sys- 
tems. The term chemical mass transfer here refers to any 
process which alters the composition of a solid or liquid 
phase in a magma in response to a change in the values 
of the intensive variables which describe the system (i.e., 
T, P, chemical potentials). Thus, chemical mass transfer 
broadly includes magmatic processes such as equilibrium 
crystallization, crystal fractionation and assimilation. It 
should be obvious that an understanding of these phenom- 
ena is required in order to appreciate fully the spatial as- 
pects of mass transport in magmas: e.g., crystal settling, 
crystal floatation or convection. 

The overall aim of this series of papers is to elucidate 
chemical mass transfer by providing a quantitative means 

of calculating phase relations in evolving magmatic systems. 
Although all magmatic processes are by definition irrevers- 
ible and represent progress of the system toward thermody- 
namic equilibrium, a prerequisite to understanding them 
in a quantitative fashion necessitates a fairly detailed de- 
scription of the equilibrium (or reversible) state of the sys- 
tem. This argument is used below to develop an algorithm 
to model the precipitation of solid-phases in magmatic sys- 
tems by utilizing equilibrium phase relations. In an accom- 
panying paper (Ghiorso and Carmichael 1985, hereafter 
Part II), numerical applications of  the algorithm described 
here are presented and compared to experimental and na- 
tural data on the equilibrium and fractional crystallization 
of basalts. Heat and density effects during crystallization 
are considered and calculations modelling solid phase as- 
similation are discussed. Additional aspects of chemical 
mass transport in magmas, including crystallization kine- 
tics, will be taken up in subsequent contributions to this 
series. 1 

There have been numerous attempts in recent years to 
quantify certain aspects of mineral-melt equilibria involving 
natural silicate liquids in order to model equilibrium crys- 
tallization or fractionation processes (Hostetler and Drake 
1980; Langmuir and Hanson 1981; Nathan and van Kirk 
1978; Nielsen and Dungan 1983; Nielsen 1985 unpublished 
paper). All of these models are based upon statistical evalu- 
ations of experimental phase equilibrium data and have 
been calibrated to empirical or semi-empirical mathematical 
expressions. As such, none of them provides sufficient infor- 
mation to establish the thermodynamic stability of the calcu- 
lated phase assemblages. The empirical approaches generate 
phase relations which are consistent with available experi- 
mental data but they do not utilize a thermodynamically 
valid description of the solid and liquid phases to determine 

1 In part III the calculation of crystal growth and nucleation of 
solid solutions due to successive degrees of under-cooling will 
be treated and the influence of steady-state phenomena on com- 
positional gradients in multicomponent silicate liquids (i.e., Soret 
effect) will be examined. In Part IV a recalibration of the silicate 
liquid solution model of Ghiorso et al. (1983) will be undertaken 
to account better for leucite-liquid and sanidine-liquid equilibria 
in more alkalic melts. This will probably entail expanding the 
number of liquid components that describe potassium interac- 
tions in the liquid to account for this element's unusual behavior. 
Also in Part IV the calculation of crystallization trends in alkalic 
liquids will be attempted and a method of obtaining the composi- 
tions of liquids coexisting with an igneous mineral assemblage 
of specified composition will be developed 
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intermediate  or final equilibrium states. This is essential if  L 
the processes involved in achieving equil ibrium in these sys- l 
terns (e.g., nucleation and crystal growth) are to be studied rn,, m2, 
or model led (Bott inga et al. 1981 ; Dowty  1980). 

The purpose  of  this paper  is two-fold.  First ,  to outline n 
a computa t iona l  a lgori thm which utilizes thermodynami-  

1"102 cally valid descriptions of  solid and liquid phases to describe p 
heterogeneous equil ibrium in magmat ic  systems. This algo- p 
r i thm incorporates  the silicate l iquid solution model  of  R 
Ghiorso  et al. (1983) and appropr ia te  act ivi ty/composi t ion r 
relations for minerals which precipi tate in crystallizing ig- T 
neous systems. Computa t iona l  methods  will be described X~, 
for both  open and closed systems. The second purpose  is 
to outline an a lgor i thm for model l ing the crystal l ization SSQ 
of  magmat ic  liquids by a succession of  discrete steps in Y c~ 
temperature,  pressure or bulk composi t ion,  with each step 
characterized by solid-liquid equilibrium. This procedure  y~ 
will be generalized to describe the computa t ion  of  equilibri- 
um crystall ization, crystal fract ionat ion,  solid phase assimi- AGz 
la t ion and magma  mixing as a function of  tempera ture  and 
pressure. The basic assumption that  underlies this computa-  ~c 
t ional  a lgori thm is that  an overall  irreversible process can ~o~ 
be descr ibed  by  a series of  equil ibrium steps. This assump- t~~ 
tion is a familiar  one to the geochemist  who has per formed o 
mass transfer  calculations in aqueous systems (c.f. Helgeson t% 
1968; Helgeson et al. 1970; Reed 1982) and has proved 2;~ 
useful in a wide variety of  appl icat ions in chemical engineer- 
ing (e.g. Smith and Missen 1982). 

The procedures  and methods  outl ined below require an 9~ 
internally consistent set of  solid-liquid thermochemical  da ta  
and a thermodynamica l ly  valid mixing model  for the liquid, 
both  of  which have been previously discussed by Ghiorso  
et al. (1983, with slight modif icat ions provided in the appen-  
dix to this paper).  In what  follows we will concern ourselves 
with the more  theoretical  aspects of  chemical mass transfer  
in magmat ic  systems, namely,  a descript ion o f  the thermo- 
dynamic  criteria for heterogeneous equilibrium, a review 
of  mathemat ica l  methods  for implement ing these criteria, 
and the construct ion of  an a lgor i thm suited to model l ing 
all aspects of  chemical mass transfer. Many  of  the computa-  
t ional  methods  to be presented below are new only in the 
context of  their application.  However,  most  of  these compu-  
ta t ional  methods  have been modif ied or extended to better  
suit the present  purpose.  We will, therefore, concentrate  
on the more significant of  these modif icat ions while present-  
ing an overview of  the general theory to place them in 
the correct  context.  

Notat ion 

Scalers 
a~i 

e 

fo~ 
G 

f 
GL 

the activity of the ith solid component in the solid phase 
rp 
number of components in ~0 t~ solid phase (i.e., equivalent 
to the) 
the fugacity of oxygen in the system 
the Gibbs free energy of the system 
intermediate variable used in step 2 of algorithm 2 
the Gibbs free energy of the liquid 

G~t, GM~, ... GM 
, , . . t s t ,  2 nd ,  the Gibbs free energy of the . . . .  g th  solid 

Go2 the Gibbs free energy of oxygen in the system 
g~o; the partial derivative of ae, with respect to X.~ evaluated 

at X.  
h intermediate variable used in step 2 of algorithm 2 

the Korzhinskii potential of a system open to oxygen 
the number of liquid components 

" ' ' 7  / r i p  
the number of components in the 1 st, 2 ~a . . . .  ,pth solid 
the number of liquid and solid components in the system 
O.e., [+ml +mz +... +mp) 
the excess oxygen content of the system (see Eq. 36) 
pressure 
the number of solid phases in the system 
the universal gas constant 
the ratio of ferric iron/total iron in the liquid 
the absolute temperature 
the mole fraction of the i tu solid component in the solid 
phase 
intermediate variable used in step 7 of algorithm 2 
intermediate variable used in step 2 of algorithm 2 
steplength parameter of order unity defined by Eqs. (28) 
and (29) 
the activity coefficient of the i th solid component in the 
phase 9 
the free energy change for the ith solid component melting 
to form a liquid at a particular T and P. 
the condition number of the projected Hessian of G (t71) 
the chemical potential of oxygen in the magma 
the standard state chemical potential of oxygen in the 
system 
the standard state chemical potential of the ith solid com- 
ponent in the solid phase 
the saturation index for the (0 'h solid phase 
a number defined to be 10 -t where t is the number of 
significant digits desired in the computation 
t h e  ith end-member component in the solid phase (o 

Vectors 
b 

g 

gL 

vector which describes the bulk composition of the system 
in terms of liquid components 
vector of chemical potentials of each component in the 
system 
the projected gradient of the system 
vector of chemical potentials of each component in the 
liquid 

gM, ,  gMz' " " ' ,  gMp 
vector of chemical potentials of each component in the 
1st, 2ha, . . .  , p t h  solid 

go2 the gradient of the Gibbs free energy of oxygen with re- 
spect to n 

n vector of moles of all liquid and solid components in the 
system (fi and n' are particular guesses for n) 

n L vector of moles of each component in the liquid 
nM t, nM z, . . . .  , nM~ 

vector of moles of each component in the I st, 2 na . . . .  ,pth 
solid 

nl, n 2 compositional vectors defined by Eq. (21) and which de- 
note the constrained and unconstrained parts of the vector 
n 

X~ vector of mole fractions of the c solid components in the 
~0 th phase, i.e., [Y~,, Xo2, .... X j  r (~[~ is a particular guess 
for X~) 

2 vector of Lagrange multipliers for the active equality con- 
straints in the system (Eq. 34) 

v i stoichiometrie reaction coefficients for each liquid compo- 
nent in the reaction which describes the dissolution of 
the i 'u solid component 

Matrices 
C block matrix which embodies the bulk composition con- 

straint on the system (Eq. 9) 
H second derivative matrix (Hessian) of the Gibbs free ener- 

gy of the system 



IrI the projected Hessian of the system 
HL second derivative matrix (Hessian) of the free energy of 

the liquid 
H~t,Hg ...,H M t 2'  p. . . second derivative mamx (Hessian) of the Gibbs free ener- 

gy of the 1 ~t, 2 "a . . . . .  pt~ solid solution 
Ho~ second derivative matrix of the Gibbs free energy of oxy- 

gen 
It identity matrix of order l 
K an orthogonal matrix which right diagonalizes C Eq. (18). 

It may be partitioned Kr=[Kt : K2] r 
R upper triangular matrix formed by right diagonalizing C. 

It may be partitioned R = [R 1 ~: O] (see Eqs. 18, 19) 
Tu~, Tu 2, ..., T~t~ 

matrix which transforms a mole vector for the 
l~t, 2,a, ...,pt~ solid from solid into liquid compositional 
variables 

O} matrix of zeros with i rows and j columns 

Symbols 
I~ evaluated at fi 
I1 T the transpose of n 
Ilnl[ the euclidian (or L2) norm of n, i.e. ]lnl] =(nTn) 1/2 
In natural (base e) logarithm 

Computing heterogeneous equilibria 
in closed magmatic systems 
Basic thermodynamic relations 

Consider a closed system, say a crystallizing body of  
magma, which consists of  both liquid and solid phases. 
For  the sake of  simplicity let us assume that this system 
has one liquid and p solid phases. Furthermore, let the com- 
position of  the liquid be described in terms of  l thermody- 
namic components,  which for convenience may be taken 
as equivalent to those used by Ghiorso et al. (1983). 2 Then 
we may define n L to be a vector of  length l whose 1 st element 
is the number of  moles of  the I st component  (Si4Os) in 
the liquid, whose 2 na element is the number of  moles of  
the 2 nd component  (Ti,Os) in the liquid, etc; n r thus de- 
scribes the composition of  the liquid phase. If  we write 
the total Gibbs free energy of  the liquid as G L, then: 

gL =- (~GL/~nL)r, e (1) 
where gL is an/-vector  whose elements are simply the chemi- 
cal potentials of the/-components  in the liquid. The equiva- 
lence of  the gradient of  G L to a vector of  chemical potentials 
results from the fact that the/-components  are linearly inde- 
pendent compositional variables. Note that in Eq. (1) we 
have taken the derivative of  a scalar with respect to a vector 
to be a vector following the suggestion of  Graham (1981). 
The utility of expressing these common thermodynamic re- 
lations in a somewhat unfamiliar vector notation will be- 
come evident below where the equilibrium criteria are ex- 
pressed, using this notation, in compact, closed form. Now 
for each of  the p solid phases in the system we can define 
the total Gibbs free energy, GM,, G~h, . . . . ,  GM , associated 
with each phase. Additionally, for each solid"phase there 
is a vector, n2u,, of  length ml (for the i tu mineral), whose 
elements are the number of  moles of  each end-member 
component  that describes the solid solution. For  example, 
in the plagioclase feldspars the compositional vector for 

2 Si408, Tir Al16/308, Fe16/3Os, Cr16/308, FeaSizOs, 
Mn,SiaO8, Mg4Si208, Co4Siz08, Ni4Siz08, Ca4Si20 s, 
N a 1 6 / 3 S i 8 / 3 0 8 ,  K 1 6 / 3 S i s / 3 0 8 ,  P 1 6 / 5 0 8 ,  S r 8 0 8 ,  H 2 0  
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the solid phase would contain three elements consisting of  
the number of  moles of  the end-member components 
CaA12Si2Os, NaA1Si308 and KA1Si308 in the feldspar. 
With these definitions a gradient analogous to Eq. (1) may 
be defined for each mineral: 

gM, =- (8 G ~,/~n~,)r,~, (2) 
where as before the m i elements of  gM, are the chemical 
potentials of  the end-member components that describe the 
mineral solid-solution (again utilizing the fact that end- 
member components are taken to be linearly independent 
compositional variables). 

With these definitions the Gibbs free energy of  the sys- 
tem, G, may be written: 

P 
G = G  c +  ~ GM, (3) 

i - 1  

and a compositional vector for the entire system may be 
constructed by stacking up the vectors already defined: I'l l1 M 

n~ |n.~ i, (4) 

[_"Md 
The dimension of  n is taken to be n, where: 

P 
n : l + ~ mi. (5) 

i = 1  

The chemical potential of  each component  in all phases 
can be re )resented by the n-vector g such that:  

gMj 
g ~ [ ~ ..~= (6) 

Clearly, 

g = (~G/Ou)T, e (7) 
if all n system components are treated as independent vari- 
ables. 

The criterion for equilibrium in this closed heteroge- 
neous liquid/solid system is that G should be minimized 
at constant temperature and pressure, with respect to the 
elements o f  the vector n, subject to the bulk composition 
o f  the system. Or, stated alternatively, the chemical ele- 
ments which compose the system must distribute themselves 
proportionally between the solid and liquid phases such 
that G, defined by Eq. (3), assumes a minimum value at 
a particular temperature and pressure. To state the equilib- 
rium criteria in more compact  mathematical form we must 
relate the compositional vector u to the bulk composition 
of  the system. 

Let b be a vector o f  length 1 whose elements are the 
number of  moles of  each of  the/ -components  that describe 
the composition of  the system (liquids+ solids). With no 
loss o f  generality we may take these "system components"  
to be equivalent to those used to describe the composition 
of  the liquid (see footnote 2). Doing so, however, necessi- 
tates that we devise some means of  expressing the composi- 
tions of  the solid phases in terms of  the adopted "system 
components." To perform this transformation we define 
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the matrices TM,, with/-rows and mi-columns, such that: 
p 

b = n L + ~ TM~ n~t ~ . (8)  
i = l  

To provide an example of a particular TM,, we may again consider 
the plagioclase feldspars. Let nM=[nC,Al~Si2OnNaAlSi3OsnKAlSi30j T 
(where nC,Al~Si~O~ denotes the number of moles of CaA12SizO s, 
etc.) andb=[bslo bT~o bAl o bFe~ o~bcr o bvesiO bunslo 4 s 4 8 ~6/~ 8 b6 /3  ~6/3 8 4 2 8 4 2 8 
bMg4Si208 bcoasizos bNi4Si208 bcaaSi208 Na1613S18/308 bK1613Si81308 bp16/508 
bs~o ~ bilbo] T, then 

~/8 5/8 5/8- 
0 0 0 

3/8 3/16 3/16 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 rip 

~ = 0 0 0 
0 0 0 

1/~ o 0 
0 3/16 0 
0 0 3/16 
0 0 0 
0 0 0 
0 0 0 

which compactly describes the linear component transformation 
desired to translate plagioclase components into liquid compo- 
nents : 

feldspar feldspar feldspar feldspar 
nsl .o  ~ = 3 /8  nCaAl2SizOs + 5 / 8  nNaAISi30 s + 5 /8  nKAISi308 

feldspar __ 
nT i408  - -  0 
nfeldspar ~ 3 fRnfo ldspar  d _ 3 / ] 6 / ~ f e l d s p a r  + ~ [ ] 6  feldspar 

Ala6/308 / u  CaAl2Si20 s ~ / NaAISi308 - / - ~ H K A I S i 3 0 8  
n feldspar - -  0 

Fe I r /308  - -  
nfeldspar - -  0 

Cr16/308 - -  
feldspar ~ 0 

nFe4Si208 
feldspar - -  0 

nMn4Si208 - -  
n feldspar ~ 0 

Mg4Si208 
nfeldspar - -  (~ 

Co4Si208 - -  
feldspar - -  

nNi4Si208 - -  0 
1~ feldspar - -  1 / 4 n  feldspar 

Ca4Si208 - -  / CaAI2Si208 
feldspar - -  feldspar 

f/Na 16/3S18/308 - -  3 / 1  6 nNaAlS~30 a 

nfeldspar  __ 3/16n feldspar 
K1613Si8/308 - -  l KAISi308 

feldspar __ 
nsrsO 8 - -  0 

feldspar 
n i l 2 0  : 0 .  

Equation (8) may be written in a much more convenient 
form if an l by n block composite matrix 3 C is defined 
such that: 
C = [I t :TM, : TM~ :... : TM~] (9) 
where I~ is the identity matrix of order l. With Eqs. (4) 
and (9) Eq. (8) becomes: 
b = C n  ( 1 0 )  

3 A block composite matrix is one which can be divided up, or 
partitioned, into sub-matrices. The partitions are denoted in this 
paper by colons 

and embodies the bulk composition constraint on our mul- 
tiphase system. 

The problem of posing the equilibrium criterion in a 
heterogeneous closed magmatic system can now be suc- 
cinctly written: 
minimize G 
with respect to n (11) 
such that b = Cn 

where it is understood that G is a non-linear function of 
IL 

Methods of  computing chemical equilibria 
We must now decide how to implement the equilibrium 
criterion given by Eq. (11). Van Zeggeren and Storey (1970) 
and more recently Smith and Missen (1982) have reviewed 
available methods for solving the problem posed by Eq. 
(11). These methods fall largely into two types. The first 
involves transformation of the problem into one of the 
equality of chemical potentials in every phase at equilibri- 
um. Mathematically, this becomes an exercise in solving 
sets of highly non-linear equations (which incorporate the 
bulk composition constraint) in n for a given b, T and 
P. In the notation we have developed this set of equations 
can be written: 
T~rl gL = g~h 
TMr2 gL = gM2 

T M  T . g L  = gMp 

C n = b  

where the first n - I  equalities correspond to zeroing the 
free energy change at a particular T and P for the reaction 
denoting the melting of each end-member solid component 
in each solid phase. The chemical potentials are incorpor- 
ated into these equations as the elements of  gL, gMl, etc. 

In the earth sciences these "chemical potential" meth- 
ods have become quite popular and form the basis of the 
heterogeneous equilibrium phase of the mass transfer calcu- 
lations describing water-rock interaction discussed by Hel- 
geson (1968), Helgeson et al. (1970), Wolery (1979), Reed 
(1982) and Helgeson and Murphy (1983). Graphically de- 
rived methods based upon the equality of chemical poten- 
tials have been utilized by Brown and Skinner (1974) to 
compute stable solid-solid and solid-liquid assemblages and 
by Barron (1976a, 1976b, 1978a, 1978b, 1981, 1983), Kim- 
berley (1980), and Ghiorso (1984) to determine the compo- 
sitions of coexisting immiscible phases. 

The other type of method for the solution of the prob- 
lem posed by Eq. (11) is the direct minimization of the 
free energy of the system using techniques of non-linear 
optimization theory (c.f. Gill et al. 1981). These methods 
have been widely used in chemical engineering but have 
been restricted to systems involving essentially pure solid 
phases (e.g. White et al. 1958). Reviews of free energy mini- 
mization methods can be found in Van Zeggeren and Storey 
(1970), Seider et al. (1980), Castillo and Grossmann (1981) 
and Smith and Missen (1982). Russian geochemists have 
embraced the free energy minimization approach in favor 
of "chemical potential" methods (Karpov and Kaz'min 
1982; Karpov et al. 1973; Shvarov 1976; Dorofeyeva and 
Khodakovskiy 1981; Ryzhenko et al. 1981) and have even 
applied it to open systems (Shvarov 1978). Recently, Saxena 



(1982) and Saxena and Eriksson (1983) have applied free 
energy minimization methods to the computat ion of  miner- 
al phase relations at a wide variety of  temperatures and 
pressures. 

Direct free energy minimization is the most  general and 
the most straight forward of  the mathematical techniques 
used to solve Eq 9 (11). Largely because of  the numerical 
stability of  minimization methods, and their ease of  pro- 
gramming, they will be adopted for the calculation of  chem- 
ical equilibrium in the mass transfer algorithm proposed 
here. In order to describe the computational  procedure in 
some detail, we need to consider an additional composition- 
al derivative of  Eq 9 (7). We begin by writing: 

HL = (~gr/~nL)r, v (12) 
where H L is an l by l symmetric matrix whose elements 
are the second cross partial derivatives of  G z with respect 
to the moles of  each component  in the liquid. H L is com- 
monly referred to as the Hessian or second derivative ma- 
trix. Bear in mind in the subsequent discussion that the 
Hessian is a matrix and that in Eq. (12) we have taken 
the derivative of  a vector with respect to a vector to be 
a matrix, after Graham (1981)3 As before, in defining H L 
the elements of  nL are considered to be independent vari- 
ables. In a similar manner for each of  the p minerals in 
the system we may define: 
HM, = (~gM]~nM~)r, p (13) 

where Hu~ is the rnz by rn~ symmetric Hessian matrix for 
the ith solid phase. The Hessian matrix, H, for the entire 
heterogeneous solid-liquid system can be expressed in a 
form analogous to Eq. (7): 

H -  (0g/~n)r ' e (14) 
where it is easy to show that: 

[o i  : oL: oL :... : ] 
 9 M1 

H =  f '  HM' O~'  .... Oy ,  (15) 
 9 . . . " 

/of. oM.  9 M 2  . . . .  *" H M v  A 

Note that H is block diagonal with dimension n by n and 
can be seen to be symmetric (the symbols O~ denote a block 
of  zeroes comprising i rows a n d j  columns). Having defined 
the Hessian of  the Gibbs free energy for the system we 
can proceed with the mechanism of  computing the equilibri- 
um state, 

The great difficulty in minimizing the free energy func- 
tion in Eq. (11) stems from its non-linearity. Therefore, 
the trick to solving the problem is the simplification of  
G. To perform this simplification we will generalize to non- 
ideal systems the procedure outlined by White et al. (1958). 

4 For example, if g=(~G/~n) and both g and n are 3-vectors, 
then: 

H=(~g/Sn) 

=](0' 0/8..  a l)o, (8" ..... (8" G/8.. 8..)~ 
1(82 G/Sn, 8n~).~ (0 2 G/Sn 3 8n2),, (~2 G/Sn~) ..... J 

where since G is an exact function of n, 
(82 G/~n, ~nj) = (~2 G/~nj ~n3 
and H is a 3 by 3 symmetric matrix 
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Let ~ be a particular vector (a specific choice o f  n) which 
approximates the minimum value of  G, i.e., fi is a good 
guess for the equilibrium configuration (see step 3 of  the 
following algorithm) 9 Then the Taylor series expansion of  
G about the multi-dimensional point fi is: 

G = G[~ + g r h ( n -  fi) + J ( n -  fi) rH[~ (n - fi) 
+ higher order terms (16) 

where the symbol [~ refers to evaluating the associated 
quantity (on the left) at the " p o i n t "  ft. For  example, G[~ 
means the Gibbs free energy of  the system when fi describes 
the distribution of  components amongst the phases at this 
particular bulk composition. Suppose we take values to n 
to be "c lose"  to fi, that is suppose 
( n -  f i ) r (n -  fi) ~- 0, 

then the higher order terms in Eq. (16) can be ignored 
and G can be approximated as a quadratic function of  n. 
This reduces the free energy minimization problem to : 

minimize [GI, + gr l~(n-  fi) + J ( n -  fi) r H l a ( n -  fi)] 
with respect to n 
subject to Cn--  b. (17) 

The solution requires only the straight forward procedure 
of  determining the minimum of  a constrained quadratic 
function. A particular solution has been provided by Betts 
(1980a, 1980b) and is based upon generalized inverse meth- 
ods used in the solution of  linear least squares problems 
(Lawson and Hanson 1974). This method of  solution of  
Eq. (17) has been adopted and a brief outline is provided 
here. 

The constraint described by Eq. (10) imposes certain relation- 
ships amongst the elements of the compositional vector n. For 
instance, one can't independently change the moles of MgO in 
the liquid and Mg2SiO ~ in the olivine in a system containing only 
olivine and liquid at constant bulk composition. In fact it is easy 
to appreciate that as there are l bulk composition constraints and 
n compositional variables, only n - l  can be independently varied. 
This implies that to define uniquely the n-dimensional component 
vector, n, in light of the bulk composition constraint, requires only 
n - l  variables. Mathematically, this is equivalent to breaking our 
n dimensional solid-liquid component space up into two subspaces, 
one which contains the constraints and has dimension l, and an- 
other which is "perpendicular" or orthogonal to the constraints 
of dimension n- l .  An orthogonal 5 or projection matrix, K, of 
dimension n by n can be constructed to perform this breakdown 
(Lawson and Hanson 1974). It is convenient to define K such that 
CK = R (18) 
where R has l rows and n columns and possesses the interesting 
structure 
R=[R1, OL,], (19) 
which is all the more unusual in that Rll is an l by 1 non-singular 
triangular (!) matrix. We can write, since K is orthogonal 
C = RK r 
which when substituted into Eq. (10) yields 
RKTn=b. (20) 

5 An orthogonal matrix is one whose columns are mutually per- 
pendicular, that is if the column elements are treated as vectors, 
then the dot product of any two Distinct column vectors is zero. 
It follows that if the columns of an orthogonal matrix have 
unit euclidian length, then the inverse of this matrix is equal 
to its transpose 



112 

Now if we partition K r such that 
KT=[K1 :K2] r 

where K 1 has n rows and l columns and K 2 has n rows and n - l  
columns then Eq. (10) becomes 
R l l K r n = b .  

But this expression leaves the last n - l  elements of n undefined! 
Exploiting this we partition the vector n into two parts, nt and 
n 2, such that 
n = K 1  nl + K 2  n 2 (21) 

where n 1 has length l and n 2 has length n - l  and uniquely compute 
the elements of n x : 
n i = Rl i  i b. (22) 
The undefined vector n 2 corresponds to the set of independent 
compositional variables in the system, any one of which can be 
varied without violating the bulk composition constraint (Eq. 10) 
which is presently contained in the vector n 1. The Gibbs free energy 
minimization problem (Eq. 17) can be restated using Eq. (21) as 
minimize [G[~ + grl~ (K 1 n 1 + K2 n2 - fi) 

+ 89  1 n l + K2 n2 _ fi)r H[~(K1 n l + K 2  n2 _ fi)] 
with respect to n 2 (23) 
where the bulk composition constraint is absent because minimiza- 
tion is performed with respect to n z instead of n. The minimum 
of this quadratic function is easily found by taking the derivative 
with respect to n 2 and setting the result equal to zero. Thus Eq. 
(23) implies (using differentiation formulas from Graham, 1981): 
K2T g[a + K2T HI~ K~ n 1 + K2THI~ K/n 2 =0 
or (24) 
K~HhK 2 n 2 = - K ~  g la -K~Hh K1 n~ 
which the reader will recognize as a linear system of equations 
in n - l unknowns. For clarity in notation, the following definitions 
are adopted : 
fg--~KzTg (25) 

and 
ITI~ K~HK2 (26) 

where ~ is known as the projected gradient and is a vector of 
length n - l  and IZI is referred to as the projected Hessian and is 
a symmetric matrix of dimension n - l. Equation (24) becomes 
ITI[fi nz  = -~h-K2THI~K1 n I (27) 
which yields a solution vector, n2, for the minimization problem 
posed by Eq. (23). 

We  are at a stage now to describe a free energy minimi- 
zat ion algori thm to determine the equil ibrium composi t ions 
of  phases in a heterogeneous system. We will assume that  
at equil ibrium in a closed system of  specified bulk composi-  
t ion (b) a liquid is stable along with p mineral  phases. In  
addit ion,  we will assume we know the identi ty of  those 
solids which are present in the equil ibrium phase assem- 
blage. Determining this equil ibrium phase assemblage is 
discussed in some detail  below. 

Algorithm 1 : Heterogeneous equilibrium in a closed system 
Step 1 : 
Generate an orthogonal matrix K, from the known constraint 
matrix C according to Eq. (18). This is most  easily accom- 
plished, numerically,  by the appl icat ion of  successive 
Householder  t ransformat ions  (Lawson and Hanson  1974) 
in the process of  r ight diagonalizing C to form R. 

Step 2: 
Solve for n I of Eq. (22). Note  that  as R l l  is t r iangular  
and non-singular  (the bulk composi t ion constraints are not  
contradictory) ,  the system o f / - equa t ions ,  R l a n l = h ,  can 
be solved by s t ra ight-forward back-substi tut ion.  

Step 3 : 
Choose an initial guess, fi, for the solution vector n. In mag- 
matic systems experience suggests (with no previous knowl-  
edge of  the par t icular  case) al locating components  by taking 
trivial masses for the solids, preserving the expected mole 
fraction rat ios of  end-members  in each phase, and assigning 
the remainder  to the liquid phase. The convergence rate 
of  the a lgori thm is not  seriously affected by the choice for 
the initial masses of  the solid phases. 

Step 4: 
Form the quantities G (Eq. 3), g (Eq. 6) and H (Eq. 14) 
evaluated at ft. To do this for magmat ic  systems we need 
free energy models  for the liquid and solid phases involved. 
These have been described by Ghiorso  et al. (1983, with 
some modif icat ions provided in the Appendix  of  this paper)  
and will not  be rei terated here. 

Step 5: 
Compute the projected gradient, ~ (Eq. 25), the projected 
Hessian, ( t  (Eq. 26) and the quantity on the right-hand side 
of  Eq. (27). 

Step 6: 
Solve the system of equations defined by Eq. (27). Betts 
(1980a, 1980b) has suggested a scheme for doing this which 
uses methods that  have wide appl icat ion in least squares 
analysis (Lawson and Hanson  1974; Ghiorso  1983). The 
scheme takes into account  the potent ial  numerical  instabili-  
ty of  a projected Hessian, par t icular ly  if  this matr ix  tends 
towards  being indefinite. In this context,  to be indefinite 
is symptomat ic  of  a phase rule violat ion (see below). 

Step 7: 
Form n according to Eq. (21). 

Step 8 : 
Check for convergence. F o r m  the norm of  the vector n - f i ,  
i.e., Iln-fi[], where the norm is taken to be the L2 norm 
(Dahlquist  and  Bj6rck 1974): 

^ ^ x [In-fill-= [(n-  n)r(n-  n)] a. 
I f z  = 10 -t ,  where t is the number  of  significant digits desired 
in the elements of  n, and /f  IIn-fi[I <#(1 + Ilnll) we have 
an indication of convergence. Proceed to step 10. I f  ]In-fill 
>vk( l  + I[n[I) then the predicted value of  n is " f a r "  from 
the guess, ft. Presumably n is a better  descript ion of  the 
equil ibrium state of  the system. We correct the situation 
by performing another quadratic minimization with a new 
guess for fi (Step 9). 

Step 9: 
Determine a new vector ft. The vector n, determined in Step 
7, may  not  be the best approximat ion  to the min imum value 
of  G since it was obtained assuming G could be expressed 
as a quadrat ic  function of  n. In general n will approach  
the equil ibrium distr ibution of  components  as the guess 



fi nears that equilibrium distribution and the quadratic ap- 
proximation improves. Although we could take our new 
guess for fi (the concentration vector for the "equil ibr ium" 
distribution of  components in the system) to be the newly 
computed n, this is occasionally infeasible and it is more 
often convenient to define: 

n' -= fi + cffn-- fi) (28) 
where e is a constant (of order unity) usually referred to 
as the steplength parameter, and is determined such that 
G[,, is minimized, i.e., 

dG(n')/d~=O. (29) 

Equation (29) is most easily solved by performing a low- 
accuracy uni-dimensional minimization such as a success- 
failure linear search with parabolic inverse interpolation 
(Algorithm No:  17 of  Nash 1979). Having obtained a suit- 
able ~ we take the new guess for fi to be n'  and proceed 
to step 4 to solve a new quadratic minimization program. 
This procedure insures that the new fi is at least a minimum 
of  G in the search direction, n - f i ,  which is the quadratic 
approximation to the direction of  steepest descent on the 
G surface at ft. In addition, in determining n '  using Eqs. 
(28) and (29), ~ can be bounded so that the elements of  
n' never become physically inplausible (i.e., the concentra- 
tion of  a solid can be prevented from becoming negative, 
etc.). Therefore, this step in the algorithm implicity main- 
tains the feasibility of  the vector ft. 

Step 10: 

Verify convergence. In reaching this step in the algorithm 
we have tentatively concluded that n is sufficiently "c lose"  
to fi to indicate that the truncated Taylor series expansion 
(Eq. 17) is an adequate approximation to G and that n 
represents a compositional vector that minimizes the Gibbs 
free energy of  the system. Practical, and very general, meth- 
ods of  verifying that n is a minimizer have been discussed 
by Murray (1972), Gill and Murray (1974) and Gill et al. 
(1982). In brief, the norm of  the projected gradient must 
be less than some specified tolerance parameter; usually 

II~ll < lO~[Igl[ 
or less stringently 

[l~[I <#llgl l .  
This is demanded to insure that n corresponds to a station- 
ary point (maximum, minimum or saddle point) of  G. In 
addition to this criterion the projected Hessian must be 
computationally positive definite. 6 This insures that n de- 
fines a minimum of  G. The tendency for a matrix to be 
indefinite is given by its condition number, ;c (Lawson and 
Hanson 1974). Specifically, in verifying that 17I is positive 
definite we demand that the projected Hessian satisfy the 
requirements of  a Cholesky decomposition (Nash 1979) and 
that 

~c< I1~11 -~ 

6 A matrix, Izl, is positive definite if for any non-zero vector x 
of appropriate length the scaler quantity xr IrIx is always posi- 
tive. If this quantity is sometimes positive, sometimes negative, 
and sometimes zero, the matrix IrI is said to be indefinite, Positive 
definite matrices are characteristic of surfaces that are concave 
up. An indefinite matrix characterizes a surface which contains 
a saddle point 
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or less stringently 

~<101[~l1-1 

With verification of  convergence the equilibrium vector n 
has been achieved. 

In implementing the proposed algorithm in magmatic 
systems certain problems immediately arise: 1) How are 
the equilibrium phases and guesses for their initial composi- 
tions determined? 2) What  happens when a phase drops 
out of  the equilibrium assemblage as during a reaction rela- 
tionship between olivine and liquid to produce orthopyrox- 
ene? 3) How are the calculations modified for a realistic 
open system approach? We proceed now to these topics, 

Supporting algorithms, computational peripherals 
and modifications for open systems 

a) Determining the saturation point for a solid solution 

Consider a dissolution reaction corresponding to the rrlelt- 
ing of  one mole of  the i th end-member component,  %, in 
the solid phase fp at a particular T and P. If  vi corresponds 
to a vector of  length I whose elements are the stoichiometric 
reaction coefficients for each liquid component,  then the 
Gibbs free energy change for the reaction of  interest is just 

T 0 AGI = vl gL--Ct~o, - -  RTln  ae~ (30) 

where gL is a vector of  liquid chemical potentials (defined 
by Eq. 1),/ t  ~ is the standard state 7 chemical potential of  
~0~, R is the universal gas constant and a~ is the activity 
of  the i th end-member component  in the phase ~0. Equation 
(30) can be rearranged to facilitate calculating the solid 
activity from the liquid chemical potentials: 

a~ = exp [ ( - A G  i + VTgL--/z~ (31) 

It should be noted that AG~ is nothing more than the nega- 
tive chemical affinity of  the dissolution reaction o f  interest. 
Equation (31) may be used to determine the saturation sur- 
face for a solid solution. We will demonstrate this using 
two cases, both of  which are a modification of  the approach 
taken by Reed (1982). 

Case 1) An  ideal solid solution 

Here, trivially, a~ may be taken to be X~, where Xo denotes 
the mole fraction of  the i th component  in the ~0 th phase. 
Let us tentatively assume that at this particular T and P 
and liquid composition (nL) the solid solution, ~b, is just 
saturated and that it should be present in the final liquid/ 
solid equilibrium assemNage, Then accordingly, we take 
AGi to be zero in Eq. (31) and we may calculate an Xe, 
for each end member in the solid solution. If  we sum these 
mole fractions for each component  the result is a number 
termed the saturation index and denoted Z'~o by Reed 
(1982): 

X ~ -  ~, X o .  (32) 
a l l  i 

If  X~ is equal to one, our assumption that the phase is 
just saturated (A@= 0) is justified and this mineral should 
appear in an initial guess of  the equilibrium phase assem- 

7 Here taken to be unit activity of the pure substance at any T 
and P. Therefore, the activity of the pure end-member compo- 
nent is always unity 
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blage in the system. I f  5" 9 is greater than unity the phase 
~b is supersaturated and should precipitate from the liquid 
at this P and T. Only if Z o is less than unity is its absence 
from the system at this P, T and bulk composition sug- 
gested. Thus if the solid solution is ideal, determining the 
saturation point is quite straight forward. It is obviously 
trivial if we consider a pure solid (a one-component solid 
solution). 

Case 2) Non-ideal solid solution 

In this case the situation is a bit more complex since the 
activity coefficient for ~o~(yo=a~,,/X~o ) is generally a func- 
tion of all the components in the solid solution. I f  there 
are c components in this solid solution we are faced with 
solving independently, a system of c non-linear equations 
of the form of Eq. (31). There are numerous numerical 
algorithms available for performing this task, most of which 
are based upon Marquardt 's  method (c.f. Nash 1979). Ex- 
perience has shown, however, that the majority of  these 
are inadequate for the present application owing to the 
fact that unless an initial guess for the various X~o~'s is quite 
good, the highly non-linear nature of the problem makes 
attainment of a solution unlikely. This is especially the case 
if the solid is highly supersaturated, where it often happens 
that during the calculation the Xo's become physically un- 
real and the 7o's become uncomputable. To alleviate these 
difficulties a new algorithm has been developed for solving 
c non-linear equations in c unknowns. It is based upon 
a Guass-Seidel method of solution (Dahlquist and Bj6rck, 
1974) and incorporates a damped-Newton search (Sp/ith 
1967) to maintain the feasibility of the J(o 's. 

Algorithm 2: Calculation of Sr  a c-component 
non-ideal solid solution 

Step 1 : 
Choose an initial guess. I f  we define X o to be a vector of 
length c whose elements are Xol, Xo2, .... Xoc, then Xo will 
denote our initial guess. It has proved convenient to take 
J(o~ = aol, Yo2 = ao~, etc. This particular choice is equivalent 
to assuming that the solid solution is ideal. Furthermore, 
we initially let X o = Xo" 

Perform the next five steps for i=  1, 2 . . . .  , e, i.e., for each 
end-member of  the solid solution: 

Step 2: 
Compute the gradient of ao, with respect to the mole frac- 
tion of ~0~ evaluated at X o. This number will be denoted 
go," Note that in this algorithm the Xo'S are treated as 
independent variables as we are trying to discover if they 
sum to unity. I f  the gradient is not computable the initial 
guess (Step 1) is infeasible. Let 

y= Xr 
f =gr 

Xo, = y  + [y/101, 
h = ly/101. 

This initializes the Newton step length. 

Step 3 : 

I f  lhl < [~ Xo, I go to step 6. 

Step 4: 
Compute the gradient of a~, with respect to the mole fraction 
of {o i evaluated at X~ (i.e. get a new g~). I f  the new veetor 
Xr is infeasible O.e., if the gradient cannot be evaluated 
at this X~) proceed to step 5. Otherwise, perform a Newton 
iteration: 

h = -go , (Xo, -Y) / (go , -J)  
Y=X<o, 
f=go, 

Go to Step 3. 

Step 5: 
The gradient in step 4 could not be evaluated at X~. Modify 
the new guess (this is the damped search of Sp/ith 1967, 
which maintains the feasibility of Xo). Let 

h=h/2 
xo, =xo,-h. 
Go to Step 3. 

Step 6:  

The i th non-linear equation has been solved. Increment i. i f  
i < c go to step 2. 

Step 7: 
Determine if  the current solution vector, Xo, satisfactorily 
satisfies all c simultaneous equations. Let 
SSQ = (Xr - Xo)T (Xo -- Xo) 

I f  SSQ <= r then a successful solution has been obtained. I f  
SSQ > z go to step 2 to try another series of  Newton searches. 

Step 8 : 
Evaluate S o: 

Zr  ~ Xr 
i = 1  

The algorithm is completed. 
In the proposed algorithm for the calculation of E o for 

non-ideal solutions, a value of Xo~ is changed continuously 
until the expression for the corresponding ar (Eq. 31) is 
satisfied. This is the essence of the Gauss-Seidel method 
and distinguishes it from Marquardt or Gauss-Newton pro- 
cedure where all Xo's  are modified continuously to attempt 
to satisfy all the equations simultaneously at every iteration. 
The numerical instability associated with the latter proce- 
dures, when applied to this particular problem, arises from 
this simultaneous adjustment. Such numerical instability is 
absent in the proposed algorithm. As might be suspected, 
the robustness of this algorithm over Marquardt and 
Gauss-Newton procedures is obtained with some sacrifice 
in rate of convergence. 

A modification of the second algorithm must be intro- 
duced when the compositions of two phases can be ex- 
pressed in terms of identical components. This situation 
arises when the two phases lie on opposite sides of  a multi- 
component solvus as do plagioclase and alkali-feldspar in 
the system NaA1Si30 s -CaA12Si2Os-  KA1Si3Os. Here the 
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above algorithm for the calculation of Z~ in a non-ideal 
solution is used to determine the saturation point for each 
phase. Once one phase is saturated, however, the presence 
of the second is detected by determining when the composi- 
tion of the first attempts to move into the multicomponent 
solvus. This requires the computation of a pseudo-binary 
solvus section at the temperature and pressure of interest. 
The activity matching algorithm of Barron (1976a, 1983) 
is used for this purpose. 8 

Once Xo is known for a particular solid solution, a selec- 
tion of probable solid phases in the equilibrium configura- 
tion of the system can be deduced and an initial approxima- 
tion to their equilibrium composition (Xo) can be specified. 

Dropping a phase from the system 

In the course of the heterogeneous solid-liquid equilibrium 
algorithm described above elements of the compositional 
vector n can become quite small. This usually occurs during 
the unidirectional minimization stage of the algorithm (Step 
9). I f  this happens for all the components of a particular 
phase it means that this phase is to be dropped from the 
equilibrium system configuration. As will be documented 
in Part II, this phenomenon commonly occurs when the 
liquid encounters a peritectic such as olivine reacting out 
to form orthopyroxene during the crystallization of a tho- 
leiite. In practice, a solid phase is dropped from the system 
if the sum of the molar amounts of all its end-member 
constituents is less than some small (trivial) mass. The sys- 
tem is then reconfigured and the minimization re-attempted 
in the absence of the offending phase. 

If  a liquid component approaches zero concentration, 
however, a more complicated problem arises. I f  solids and 
liquids coexist, the liquid must always contain some small 
amount of  every component present in every solid. So we 
simply cannot set the concentration of a liquid component 
to zero if it gets "small" ,  but for computational reasons, 
we cannot let the concentration of the liquid component 
become as "smal l"  as it would like. Furthermore, we must 
consider the possibility of subsequently resorbing a solid 
which contains this liquid component and we must recog- 
nize the likelihood that the impending disappearance of 
this liquid component might be an artifact produced by 
the quadratic approximation to the free energy function. 
The answer to these difficulties involves involves invoking 
an additional equality constraint which fixes the concentra- 
tion of a liquid component at some small (trivial) value 
if the concentration of this component attempts to drop 
below this value. Algorithm (1) described above accommo- 
dates this solution perfectly. 

Having solved the problem of preventing a liquid com- 
ponent from disappearing completely, we are now faced 
with determining when it should reappear (as for example 
when resorbing a solid). Associated with each of the active 
equality constraints in our system (Eq. 10) is a Lagrange 
multiplier. These may be denoted by the elements of the 
vector 2, where 

c T  • ~ g[ equilibrium n 

o r  

8 Barron's algorithm has proved more than adequate in the present 
application (see Part II) but is subject to "consolute drift ~ (L.M. 
Barron, personal communication) in that the computed solvus 
tieline may migrate off the solvus isotherm near the consolute 

C r 2 ~ glother, (34) 

(Gill et al. 1981). If  the equality constraint associated with 
preventing the liquid component of  interest from disappear- 
ing has a positive Lagrange multiplier, then the constraint 
is active (Gill et al. 1981) - The liquid is still trying to 
precipitate more of this component. If, however, for some 
particular value of n determined at step 7 of the heteroge- 
neous equilibrium algorithm, the value of the estimated La- 
grange multiplier for this constraint is negative, the liquid 
is attempting to resorb a solid involving this component 
and the constraint should be removed. Therefore, checking 
the sign of the estimated Lagrange multipliers (Eq. 34) will 
determine when a liquid constraint should be removed. I f  
removal is indicated the system of equality constraints is 
then reconfigured and the minimization re-attempted in the 
absence of the offending constraint. 

Modifications for open system calculations 

In Part II it will be demonstrated that in order to calculate, 
using the approach outlined here, the correct fractional 
crystallization and equilibrium crystallization trends of tho- 
leiitic magmas, the magmatic system must be assumed to 
be open to oxygen. That is, the bulk composition constraint 
on both ferric and ferrous iron must be replaced with a 
single bulk composition constraint on total iron. This 
means that in the course of crystallization the system assimi- 
lates or expels oxygen as the need arises. Having made 
this observation it should be recalled that the composition 
of the "sys tem" is defined in terms of an adopted set of 
liquid components (see footnote 2) which involve only one 
oxidation-reduction couple, that between ferric and ferrous 
iron. In a magma, other redox couples will certainly be 
present, as for example, those between dissolved carbon 
or sulfur species. Therefore, the need to incorporate oxygen 
transfer to model crystallization may, in part, be an artifact 
of our choice of compositional variables for the system. 
What is clearly necessary (see Part II) is for iron to be 
transferred between its oxidized and reduced melt species 
during crystallization. The net oxygen expelled or absorbed 
as a consequence of this transfer can be stored or provided 
by another melt redox couple functioning as a magmatic 
oxygen reservoir or, alternatively, via oxygen metasoma- 
tism into and out of the magma. In the latter case, the 
country rock functions as an external oxygen reservoir. 
Though the consequences of these alternatives are discussed 
in Part II, it should be recognized here that the idea of 
oxygen metasomatism is just hydrogen metasomatism in 
disguise. It is widely recognized that hydrogen can diffuse 
easily through crustal and mantle rocks (Sato 1978; Arculus 
and DeLano 1981). Therefore, it should be able to readily 
enter or leave a crystallizing magma chamber. As the fuga- 
city of hydrogen in the magma is linked through the water 
content to the fugacity of oxygen, it can be argued that 
the chemical potential of oxygen in the melt, and hence 
the melt's ferric/ferrous ratio, should be roughly fixed by 
external conditions rather than internal equilibria. Similar- 
ly, if the magma's oxygen fugacity is largely controlled by 
internal buffers which are exclusive of the "'system "' bulk 
composition, then for calculational purposes the melt's 
ferric/ferrous ratio can also be considered fixed by external 
conditions rather than internal equilibria. These concepts 
have been extensively developed in the literature on metaso- 
matic processes and should be quite familiar to the meta- 
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morphic petrologist who has dealt with the notion o f " p e r -  
fectly mobile components" (Korzhinskii 1959; Thompson 
1970). That the fugacity or chemical potential of oxygen 
in the melt is somehow fixed by the external conditions 
is the essential aspect of open system equilibrium calcula- 
tions involving perfectly mobile components. In such sys- 
tems the thermodynamic function which is minimized at 
equilibrium is not the Gibbs free energy, but the Korzhin- 
skii potential, L (Thompson 1970; Shvarov, 1978). In the 
case of the magmatic system open to oxygen: 

L = G -  Go2. (35) 
Here G is defined by Eq. (3) and Go2 is the Gibbs free 
energy of oxygen, given by: 

Go2 = no2 #o2. (36) 
In Eq. (36) no2 is taken as the "excess oxygen of the system" 
implied by the production of ferric from ferrous iron during 
the minimization of L at a given T and P. The chemical 
potential of oxygen, which is externally fixed, is given by 

/~o2 = #~ 2 + R T lnfo 2 
where/~~ is the chemical potential of oxygen in the stan- 
dard stat~ (see Appendix). The relationship between the 
fugacity of oxygen, melt composition and melt ferrous/ 
ferric ratio has been provided by Kilinc et al. (1983). 

I f  the/to~ of the melt is dictated by an externally fixed 
oxygen fugacity then the relationship of Kilinc et al. (1983) 
imposes an additional equality constraint on the system 
which involves the moles of the liquid components. This 
equality constraint replaces the one discarded 'by allowing 
the transformation of ferrous to ferric iron i n  the liquid. 
Recognizing this, we now have a new function to minimize 
(L) and a new set of equality constraints (C) and we could 
execute an algorithm like the one described above to mini- 
mize G except for the fact that the Kilinc et al. ( t983) 
equality constraint is non-linear. It relates the logarithm 
of the ferrous/ferric ratio in the liquid to the mole fractions 
of the other liquid components. 

Methods of minimizing non-linear functions subject to 
non-linear equality constraints have been discussed by Gill 
et al. (1981). These methods are complex enough to consid- 
er techniques of linearizing the Kilinc et al. (1983) equation. 
By evaluating the available experimental data (c.f. Kilinc 
et al. 1983; Ghiorso et al. 1983), it can be empirically shown 
that in a melt fractioning or crystallizing as temperature 
decreases along anfo2 buffer like QFM, the ferric/total iron 
ratio, r, in the melt remains essentially constant. Thus, if 
the initial ferric/ferrous ratio in the melt is fixed using the 
Kilinc et al. (1983) equation at a knownfo~, then preserving 
the ratio r in the melt as it crystallizes and cools is essentially 
equivalent to imposing the full Kilinc et al. (1983) non- 
linear constraint. In fact, what will happen (see Par t  II) 
is that the melt will crystallize along any f% buffer which 
is initially fixed by the ratio. Note that this constant ferric/ 
total iron ratio implies a linear equality constraint, for if 
(using Ghiorso et al. 1983, liquid components) 

nliquid / / n l i q  uid ..t_ 3 nl iquid 
r ~  Fe16/308/ \  Fe16/308 ~ 4 -  Fe4Si2Os]~ 

then 
t ~ liquid 3 r n i i q u i d  - - 0  (37) 
J- - -  r ) n F e l 6 / 3 0 8  - - ~  Feasi208 - -   9 

By linearizing the Kilinc et al. (1983) expression according 
to Eq. (37) and using it as an equality constraint on the 

chemical potential of oxygen, the potential L can be mini- 
mized using the algorithm discussed above. 9 Phase equilib- 
ria can then be computed in magmatic systems open to 
oxygen. 

An algorithm for calculating chemical mass transfer 
in magmatic systems 

In the algorithms outlined above, methods are established 
for determining the identity and equilibrium proportions 
of phases in a magmatic system potentially open to a per- 
fectly mobile component at a particular P and T. In order 
to model magmatic processes which involve changing T, 
P or even bulk composition (other than O2), these algo- 
rithms must be extended to form the kernel of a calcula- 
tional scheme describing chemical mass transfer. The es- 
sence of this calculational scheme will be that the evolution 
of a system undergoing any smoothly continuous change, 
such as gradually varying temperature, pressure or bulk 
composition with time, can be adequately approximated 
as a series of steps in T, P or system bulk composition, 
with each step characterized by thermodynamic equilibri- 
um. The following procedure embodies this approximation. 
A FORTRAN 77 implementation has been used to numeri- 
cally model crystallization and assimilation in magmatic 
systems (Part II). 

Algorithm 3: The calculation of  equilibrium crystallization, 
crystat fractionation, magma mixing or solid phase assimila- 
tion in magmatic systems 

Step 1 : 
Choose an initial composition of  the system and a set of  
characteristic intensive variables (T, P, initial fo2). The sys- 
tem is here assumed to consist entirely of a liquid phase 
(perhaps a metastable condition). 

Step 2: 
Evaluate standard state thermodynamic data at the tempera- 
ture and pressure of  interest (see appendix and Ghiorso et al. 
1983). 

Step 3 : 
Evaluate the extent o f  super- or under-saturation for all solid 
phases not in the system at this T, P, and liquid composition. 
For non-ideal solid solutions execute Algorithm (2) for each 
phase. 

9 In the algorithm the vector g must be replaced with g-go2, 
where go2 is a vector of length n and is defined by 
go2 -= (SGo2/0n)r,P. 
Recall that Go ~ = no~Po2 and note that since the melt oxygen 
fugacity is a function of liquid composition, only the "mineral 
component" derivatives of/to2 are zero. In taking the above 
derivative the reader should recall that no2 is defined in terms 
of the excess oxygen in the system, that is, in terms of both 
liquid and solid components. 

In addition, the matrix H must be replaced by H-Ho2, 
where 
Ho2 ~ (OgoJ~n)'r. e, 
and is symmetric and of dimension n. In general, Ho~ is not 
of the simple block diagonal form of H due to the non-zero 
liquid-solid component cross-derivatives of Go2 



Step 4: 
Add the most super-saturated phase determined in step 3 
(largest Zo) to the system (give it a trivial mass proportioned 
according to the expected mole fractions of its end-member 
components). I f  no solid is super-saturated proceed to step 
5. 

Step 5: 
Construct bulk composition and/or oxygen buffer equality 
constraints appropriate to open or closed systems given this 
assemblage of  liquid and solids. 

Step 6: 
Determine the equilibrium proportions and compositions of  
the solid and liquid phases by minimizing G or L according 
to Algorithm (1) described above. In the course of minimiza- 
tion if: 

a) A solid phase is exhausted. Drop the phase from 
the system and go to Step 5. 

b) The number of moles of a liquid component ap- 
proaches "zero." Add an equality constraint and go to 
step 5. 

c) The Lagrange multiplier for the equality constraint 
on a liquid component indicates the constraint is no longer 
necessary. Drop the constraint and go to Step 5. 

d) The projected Hessian becomes singular, i.e. the sys- 
tem of Eq. (27) cannot be solved. This usually arises when 
the concentration of a solid or liquid component nears 
"zero" .  The situation can be remedied by taking action 
according to (a) or (b). 

e) Convergence criteria cannot be met and the best qua- 
dratic approximation to G has been achieved. Stop in de- 
feat. 

Step 7 : 
Determine if  additional solid phases should be included in 
the system. Evaluate the extent of super- or under-satura- 
tion for all solid phases not in the system at the T, P and 
new liquid composition. For non-ideal solid solutions exe- 
cute algorithm (2) for each phase. Add the most super-satu- 
rated phase so determined to the system and go to Step 5. 
I f  no solid is super-saturated we have achieved the stable 
liquid/solid configuration. Proceed. 

Step 8 : 
If  modelling fractionation: 

a) Adjust the masses of all solids in the system to trivial 
amounts and modify the bulk composition of the system 
accordingly. 

b) Preserve the current mole fraction ratios in the resid- 
ual solids. 

Step 9: 
I f  changing T and P, increment to the next value (in the 
calculations which appear in Part II a step of 15 ~ C is usual- 
ly made). 

Step 10: 
I f  modelling the assimilation of a solid phase or the mixing 
of magmas, add a small increment of new material to the 
system by altering the bulk composition, assuming for the 
moment that any such material dissolves completely into 
the liquid phase. As the equilibrium solid/liquid propor- 
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tions will be subsequently determined this assumption is 
made only for computational convenience. 

Step 11 : 
I f  only the bulk composition of the system has been changed 
(i.e. T, P remain constant) go to Step 3 to determine a 
new equilibrium configuration, otherwise go to Step 2 to 
recompute the standard state thermodynamic data. 

By continuously monitoring the state of the system at 
Step 7, the evolution of the magmatic phase relations can 
be studied in a series of discrete intervals between some 
initial and final temperature, pressure and bulk composi- 
tion. In practice, the method outlined above has been found 
to be quite satisfactory (see Part II). The most time-consum- 
ing aspect is the calculation of the saturation index (Z'r 
for the various non-ideal solid solutions. However, this al- 
gorithm leads to very accurate solid phase selection for 
the equilibrium configuration. Convergence to a stable as- 
semblage is usually achieved in four to five quadratic mini- 
mization attempts of the potential function. In addition, 
the solid phase deletion algorithm has proven adequate in 
dealing with a peritectic reaction relationship. 

Summary 
This paper describes an algorithmic framework within 
which chemical mass transfer calculations in magmatic sys- 
tems can be performed. The main procedures in this algo- 
rithm are based upon the ability to describe the equilibrium 
state of a closed system by direct minimization of the Gibbs 
free energy. The minimization procedures incorporate non- 
linear mathematical programming (optimization) tech- 
niques which have not been extensively utilized by geochem- 
ists. The algorithm also contains procedures for identifying 
the heterogeneous phase assemblage stable at equilibrium 
and incorporates phase selection techniques which are more 
accurate that the empirical "rules"  utilized by other 
workers (Wolery 1979; Saxena 1982). These techniques al- 
low routine calculations with highly non-ideal solutions. 

In Part II it will be demonstrated that incorporation 
of the concept of perfectly mobile components is essential 
in order to successfully model crystal fractionation in a 
magmatic system. Specifically, to obtain geologically ac- 
ceptable results, the magma must be open to oxygen 
transfer with a fixed oxygen potential set by equilibria exter- 
nal to the system. The present algorithm easily accomodates 
this requirement through constrained minimization of the 
Korzhinskii potential and allows for the calculation of mag- 
marie mass transfer in systems open to oxygen. 
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Appendix: Revision of Thermodynamic Data 
and Solid-Solution Models 

This appendix describes the pertinent revisions and additions that 
have been made to the thermodynamic database of Ghiorso et al. 
(1983, their appendices 1 and 2) in order to implement the algo- 
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Table A1. Additional sources of thermodynamic data 

Phase Solid-solution model Component  Measured Adjusted A H~y Accepted 
A / ~  r (298 K, 1 bar) Ghiorso et al. AHOy 
two standard errors 1983 

Olivine c.f. Ghiorso et al. 1983 

Feldspar Ghiorso (1984) 

Opx Ideal Solution 

Cpx Nicholls and Stout (1983) 

Spinel c.f. Ghiorso et al. 1983 

Liquid 

Forsterite - 518,731 - 518,350 (same) 
317 

Fayalite -- 353,576 -- 352,365 (same) 
576 

Albite -937,916 - 938,699 (same) 
870 

Anorthi te  - 1,014,110 - 1,013,656 (same) 
747 

Sanidine - 946,358 - 945,800 - 943,919 
8O5 

Enstatite -- 369,921 -- 369,640 -- 370,217 
29O 

Ferrosilite - 284,734 - 283,920 - 284,506 

Diopside - 767,390 - 765,570 - 766,099 
2,180 

Hedenbergite - 678,496 - 680,490 - 681,487 

Enstatite ( - 739,482) - -- 735,222 

Ferrosilite (--  569,468) - -- 564,732 

Magnetite -- 284,927 -- 284,630 - 261,715" 
500 

Ulv6spinel -- 356,758 -- 358,160 -- 357,661 

Fel6/30 s -- 518,224 - 519,023 - 563,990 
8O0 

a New Accepted S~ b,r = 34.982 cal/K; Cp = 48.00 cal/K (Helgeson et al. 1978) consistent with A/4~I = -265,007 cals 

rithms outlined in this paper. In general these changes reflect the 
adoption of new models for the thermodynamic description of solid 
solutions. The necessity for these changes largely stems from the 
difficulty of using very general solid-solution models to back-calcu- 
late the composition of a mineral from the assumption of chemical 
equilibrium with a melt of known bulk composition. As an example 
consider pigeonite-melt equlibria. Ghiorso et al. (1983) outline a 
simple method, based upon ideal site mixing, to obtain an estimate 
of the activity of MgSiO 3 and FeSiO 3 in this pyroxene if its compo- 
sition is known, and further demonstrate how these activities trans- 
late into a relationship between the activities of Si4Os, Mg4Si20 8 
and Fe4Si20 s in the liquid coexisting with this pyroxene. The ancil- 
lary data used by Ghiorso et al. (1983) to make this inference are 
the Gibbs free energy of fusion of enstatite and ferrosilite at the 
temperature and pressure of interest. Consider now the same equi- 
libria and the calculation proposed in algorithm number  two of 
this paper:  from the composition of the liquid determine whether 
or not  pigeonite is saturated in this liquid and if so estimate its 
composition. This calculation involves the determination of the 
activities of all the components  in the pigeonite and requires that  
we know many more free energies of fusion. These activities must 
then be translated back into mole fractions. The available thermody- 
namic data are inadequate to the task and we must content our- 
selves with describing calculated pyroxene compositions involving 
manageable numbers of components. 

Table A1 details the changes made to the activity/composition 
relations (Appendix 1) and thermodynamic data (Appendix 2) of 
Ghiorso et al. (1983). Specific corrections are discussed in detail 
below for each phase. 

Feldspar 

Ghiorso et al. (1983) modelled the plagioclase and alkali-feldspar 
binaries as ideal solutions specifically neglecting solid-solution 
within the ternary system NaA1Si3Os--CaAlzSi2Os--KA1Si30 s. 
For  the purposes of this paper the ternary feldspar model of 
Ghiorso (1984) has been adopted. This requires some readjustment 
of the enthalpy of formation of sanidine (Table A1) to bring the 
new solid activity formulation into accord with the liquid solution 
model of Ghiorso et al. (1983) and the experimentally determined 
plagioclase-liquid equilibria upon which this liquid model is based. 
The new feldspar activity/composition relations did not necessitate 
altering the previously adjusted enthalpy data for albite and an- 
orthite. The rather large change in the enthalpy of formation of 
sanidine indicated in Table A1 suggests some problem with the 
Kx6/3Sis/30 a binary interaction coefficients in the liquid or the 
thermodynamic properties of molten potassium metasilicate 
adopted by Ghiorso et al. (1983). This suggestion is collaborated 
by the rather poor description of leucite-liquid equilibria provided 
by Ghiorso et al. (1983). It is further substantiated by preliminary 
calculations of the type described here, which indicate the need 
for further work before equilibrium relations involving K-silicates 
can be adequately modelled in liquids more potassic than tholeiites. 

Pyroxene 
Ghiorso et al. (1983) treated the Ca-poor pyroxenes using ideal 
site mixing theory. This approach is consistent with ideal mixing 
of MgSiO 3 and FeSiO 3 components if at tention is restricted to 



the enstatite-ferrosilite joins. Due to a lack of adequate thermody- 
namic data we have chosen to express the compositions of Ca-poor 
pyroxenes within this restricted binary system and have conse- 
quently treated the orthopyroxenes as ideal solutions. 

The solution model suggested by Nicholls and Stout (1982) 
has been adopted to formulate activity/composition relations for 
calculations involving clinopyroxenes. Their model describes py- 
roxene compositions within the quadrilateral CaMgSi206 - C a F e -  
Si206--Mg2Si206-F%Si206 and allows for the preferential site 
occupancy of Fe on the M2 site. The free energy for the solid 
exchange reaction 

CaMgSi20 6 + 89 6 = CaFeSi20 6 + 89 6 
used in Nicholls and Stout's (1982) model has been made to con- 
form to the data in Table A1 and that in Ghiorso et at. (1983). 

The activities of CaMgSi20 6 and CaFeSi20 6 in clinopyroxenes 
were described using ideal site mixing theory by Ghiorso et al. 
(1983). For proper implementation of the back calculation scheme 
used in this paper, the ideal site mixing model has proved insuffi- 
cient. Unfortunately, there are not adequate data to extend Ni- 
cholls and Stout's formulation to AI-, Na- or Ti-bearing clinopy- 
roxenes. Therefore, the Ca-rich pyroxenes participating in the mass 
transfer calculations described in Part II have compositions re- 
stricted to the pyroxene quadrilateral. 

The revised enthalpies listed in Table A1 reflect adjustment 
to make the liquid solution model and pyroxene-Iiquid database 
of Ghiorso et al. (1983) conform to the new solid-solution model 
for the pyroxenes. 

Spinel 
The activity/composition relations for spinels adopted by Ghiorso 
et al. (1983) express compositions within the 5-space: FeAI20 4 -  
MgAI20 ~ - FeCr204 -- FezTiO 4 -  Fe304. Because activity/compo- 
sition relations involving Cr in the liquid have not been properly 
calibrated and because in the absence of the chromite component 
most low pressure igneous spinels can be essentially treated as 
ulv6spinel-magnetite solid solutions, we have limited spinel solid- 
solution in Part II to the Fe2TiO4-  Fe30 4 join. The relevant solu- 
tion properties appropriate to this binary have been retained and 
the enthalpies of  formation (Table AI)  adjusted to fit the magne- 
tite-liquid and ulv6spinel-liquid data of Ghiorso et al. (1983) exclu- 
sive of the other spinel components. The correction for magnetite 
reflects an additional adjustment to the accepted entropy and heat 
capacity of the mineral (a preference for the heat capacity of Helge- 
son et al., 1978, over that of Robie et al., 1978, see Table A1) 
and a change in the accepted enthalpy of formation of the liquid 
component Fe16/30 8 (see below). 

Other Phases 
The data reported in Kiline et at. (1983) can be used to evaluate 
the redox equilibria: 

O 3 1 " F e 4 S i z O s  + 2 = ~ F e ~ 6 / 3 O s  + g S I 4 O s  
l iqu id  gas  l i qu id  l iqu id  

in a wide variety of natural silicate liquids above their one-bar 
liquidus. These data were not used to explicitly constrain ferric 
iron interactions in the solution model of Ghiorso et al. (1983) 
but the Fe+3/Fe +1 ratios determined in liquids equilibrated along 
the QFM buffer have been used here to adjust the enthalpy of 
formation of Fe16/30 s. Such an adjustment makes the Ghiorso 
et al. (1983) model consistent with the Kilinc et al. (1983) database 
at QFM without recalibrating all the regular solution liquid-inter- 
action terms. It appears in retrospect that these interaction parame- 
ters were not adequately fixed by the solid-liquid equilibria consid- 
ered in Ghiorso et al. (1983). The indicated adjustment of the en- 
thalpy of  formation, as opposed to the entropy or enthalpy of 
fusion, of Fe16/30 s is quite arbitrary but reflects an acknowledged 
uncertainty in the thermochemical properties of this liquid compo- 
nent. A more satisfactory approach would be the complete recali- 
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bration of the solution model of  Ghiorso et al. (1983) incorporating 
the constraints provided by the entire Kilinc et al. (1983) database. 
This recalibration is under investigation. 

The thermodynamic properties of oxygen gas are taken from 
Helgeson et al. (1978). Values of the fugacity of oxygen correspond- 
ing to a particular oxygen buffer as a function of T (at 1 bar) 
were obtained from Myers and Eugster (1983). The pressure depen- 
dence of  the oxygen buffers have been computed from thermody- 
namic data reported by Robie et al. (1978). 

The solid phases leucite and the rhombohedral oxides (hema- 
tite-ilmenite-geikielite solid solutions) were not considered in the 
mass transfer calculations described in this paper and reported 
in Part II. In the case of the former, the activity/composition rela- 
tions involving K16/3Si8/30 8 in the liquid (e.g., Ghiorso et al., 1983) 
are deemed inadequate for highly potassic liquids and for con- 
sistency, the phase was not allowed to form during calculations 
on any liquid composition. Careful examination of the rhombohed- 
ral oxide data utilized by Ghiorso et al. (1983) suggests that these 
phases crystallized metastably. The evidence includes their rather 
high-temperature appearance on the liquidus ( ~  100 ~ above their 
expected appearance) and their excessively high Mg-contents (~  
7 wt. % MgO). When the mass transfer calculations described in 
Part II were first performed, rather high-temperature Mg-rich 
rhombohedral oxides were crystallized under P -  T conditions ob- 
viously outside their natural stability range. For  this reason the 
phase was suppressed from forming entirely in all the calculations 
reported in Part II. 

References 

Arculus RJ, Delano JW (1981) Intrinsic oxygen fugacity measure- 
ments: techniques and results for spinels from upper mantle 
peridotites and megacryst assemblages. Geochim Cosmochim 
Acta 45:899 913 

Barton LM (1976 a) A comparison of  two models of ternary excess 
free energy. Contrib Mineral Petrol 57:71-81 

Barron LM (1976b) Segregation in ternary solutions. Geochem 
J 10:145-154 

Barron LM (1978a) The geometry of multicomponent exsolution. 
Am J Sci 278:1269-1306 

Barron LM (1978b) A simple method of estimating the binodal 
surface. Geochem J 12:101-105 

Barron LM (1981) The calculated geometry of silicate liquid im- 
miscibility. Geochim Cosmochim Acta 45:495-512 

Barron LM (1983) Programs for calculating the geometry of multi- 
component exsolution. Comp Geosci 9: 81-111 

Betts JT (1980a) A compact algorithm for computing the station- 
ary point of a quadratic function subject to linear constraints. 
ACM Trans Math Software 6:391-397 

Betts JT (1980b) Algorithm 559 : The stationary point of a quadra- 
tic function subject to linear constraints [E4]. ACM Trans Math 
Software 6:432-436 

Brown TH, Skinner BJ (1974) Theoretical prediction of equilibrium 
phase assemblages in multicomponent systems. Am J Sci 
274: 961-986 

Bottinga Y, Weill DF, Richet P (1981) Thermodynamic modelling 
of silicate meIts. In: Newton RC, Navrotsky A, Wood BJ (eds) 
Thermodynamics of Minerals and Melts (Advances in Physical 
Geochemistry: v 1). Springer Berlin Heidelberg New York 
207-246 

Castillo J, Grossman IE (1981) Computation of phase and chemical 
equilibria. Comp Chem Eng 5:99-108 

Dahlquist G, Bj6rck ~ (1974) Numerical Methods. Prentice-Hall, 
Englewood Cliffs, New Jersey, p 573 

Dorofeyeva VA, Khodakovskiy IL (1981) Calculation of the equi- 
librium composition of multicomponent systems by "minimiza- 
t ion" method from the equilibrium constants. Geochem Inter- 
nat 1811] : 80-85 

Dowty E (1980) Crystal growth and nucleation theory and the 
numerical simulation of igneous crystallization: In: Hargraves 



120 

RB (ed) Physics of Magmatic Processes, Princeton Univ. Press, 
Princeton, New Jersey, 419-486 

Ghiorso MS (1983) LSEQIEQ : A FORTRAN IV subroutine pack- 
age for the analysis of multiple linear regression problems with 
possibly deficient pseudorank and linear equality and inequality 
constraints. Comp Geosci 9:391-416 

Ghiorso MS (1984) Activity/composition relations in the ternary 
feldspars. Contrib Mineral Petrol 87:282-296 

Ghiorso MS, Carmichael ISE (1985) Chemical mass transfer in 
magmatic processes. II) Applications in equilibrium crystalliza~ 
tion, fractionation and assimilation. Contrib Mineral Petrol (in 
press) 

Ghiorso MS, Carmiehael ISE, Rivers ML, Sack RO (1983) The 
Gibbs flee energy of mixing of natural silicate liquids; an ex- 
panded regular solution approximation for the calculation of 
magmatic intensive variables. Contrib Mineral Petrol 
84:107-145 

Gill PE, Murray W (1974) Newton-type methods for linearly con- 
strained optimization. In: Gill PE, Murray W (eds) Numerical 
Methods for Constrained Optimization. Academic Press, New 
York, 29-66 

Gill PE, Murray W, Wright MH (1981) Practical Optimization. 
Academic Press, New York, p 401 

Graham A (1981) Kronecker Products and Matrix Calculus with 
Applications. Halsted Press (John Wiley and Sons), New York, 
p 130 

Helgeson HC (1968) Evaluation of irreversible reactions in geo- 
chemical processes involving minerals and aqueous solutions 
- I. Thermodynamic relations. Geochim Cosmichim Acta 
32 : 853-877 

Helgeson HC, Brown TH, Nigrini A, Jones TA (1970) Calculation 
of mass transfer in geochemical processes involving aqueous 
solutions. Geochim Cosmochim Acta 34 : 569-592 

Helgeson, HC, Delany JM, Nesbitt HW, Bird DK (1978) Summary 
and critique of the thermodynamic properties of rock-forming 
minerals. Am J Sci 278-A: 1-229 

Helgeson HC, Murphy WM (1983) Calculation of mass transfer 
among minerals and aqueous solutions as a function of time 
and surface area in geochemical processes. I. Computational 
approach. Math Geology 15:109-130 

Hostetler CJ, Drake MJ (1980) Predicting major element mineral/ 
melt equilibria: A statistical approach. J Geophys Res 
85:378%3796 

Karpov IK, Kaz'min, LA (1972) Calculation of geochemical equi- 
libria in homogeneous multicomponent systems. Geochem In- 
ternat 9 : 252-262 

Karpov IK, Kaz'min LA, Kashik SA (1973) Optimal programming 
for computer calculation of irreversible evolution in geochemi- 
cal systems. Geochem Internat 10:464-470 

Kilinc A, Carmichael ISE, Rivers ML, Sack RO (1983) The ferric- 
ferrous ratio of natural silicate liquids equilibrated in air. Con- 
trib Mineral Petrol 83:136-140 

Kimberley MM (1980) SOLVUS: A FORTRAN IV program to 
calculate solvi for binary isostructural crystalline solutions. 
Comp Geosci 6: 237-266 

Korzhinskii DS (1959) Physiochemical Basis of the Analysis of 
the Paragenesis of Minerals. Consultants Bureau, New York, 
p 142 

Langmuir CH, Hanson GN (1981) Calculating mineral-melt equi- 
libria with stoichiometry, mass balance, and single-component 
distribution coefficients. In: Newton RC, Navrotsky A, Wood 
BJ (eds) Thermodynamics of Minerals and Melts, (Advances 
in Physical Geochemistry), Springer Berlin Heidelberg New 
York, pp 247-272 

Lawson CL, Hanson RJ (1974) Solving Least Squares Problems. 
Prentice-Hall, Englewood Cliffs, New Jersey, p 340 

Murray W (1972) Failure, the causes and cures. In: Murray W 
(ed) Numerical Methods for Unconstrained Optimization, Aca- 
demic Press, New York, 107-122 

Myers J, Eugster HP (1983) The system F e - - S i - O :  Oxygen buffer 
calibrations to 1,500 K. Contrib Mineral Petrol 82:75-90 

Nash JC (1979) Compact Numerical Methods for Computers: Lin- 
ear Algebra and Function Minimisation. Wiley, New York, 
p 227 

Nathan HD, Van Kirk CK (1978) A model of magmatic crystalliza- 
tion. J Petrol 19:66-94 

Nicholls J, Stout MZ (1982) Heat effects of assimilation, crystalli- 
zation, and vesiculation in magmas. Contrib Mineral Petrol 
84:328-339 

Nielsen RL, Dungan MA (1983) Low pressure mineral-melt equi- 
libria in natural anhydrous mafic systems. Contrib Mineral Pet- 
rol 84: 31 0-326 

Reed MH (1982) Calculation of multicomponent chemical equilib- 
ria and reaction processes in systems involving minerals, gases 
and an aqueous phase. Geochim Cosmochim Acta 46:513-528 

Robie RA, Hemingway BS, Fisher JR (1978) Thermodynamic 
properties of minerals and related substances at 298.15 K and 
1 Bar (10 s Pascals) pressure and at higher temperatures. US 
Geol Sur Bull 1452, p 456 

Ryzhenko BN, Mel'nikova GL, Shvarov YuV (1981) Computer 
modelling of formation of the chemical composition of natural 
solutions during interaction in the water-rock system. Geochem 
Internat 1812]:94-108 

Sato M (1978) Oxygen fugacity of basaltic magmas and the role 
of gas-forming elements. Geophys Res Lett 5:442449 

Saxena SK (1982) Computation of multicomponent phase equilib- 
ria. In: Saxena SK (ed) Advances in Physical Geochemistry, 
(Advances in Physical Geochemistry, v 2), Springer Berlin Hei- 
delberg New York, pp 22~242 

Saxena SK, Eriksson G (1983) Theoretical computation of mineral 
assemblages in pyrolite and lherzolite. J Petrol 24:538-555 

Seider SD, Gautam R, White CW III (1980) Computation of phase 
and chemical equilibrium: A review. (Computer Applications 
to Chemical Engineering) Am Chem Soc Symp Ser 124 

Shvarov YuV (1976) Algorithm of calculation of the equilibrium 
composition in a multicomponent heterogeneous system. Dokl 
Akad Nauk SSSR 22915]:1224 

Shvarov YuV (1978) Minimization of the thermodynamic potential 
of an open chemical system. Geochem Internat 1516]:200-203 

Smith WR, Missen RW (1982) Chemical Reaction Equilibrium 
Analysis. Wiley, New York, p 364 

Sp/ith H (1967) The damped Taylor Series method for minimizing 
a sum of squares and for solving systems of non-linear equa- 
tions. Comm ACM 10:726 

Thompson JB Jr (1970) Geochemical reaction and open systems. 
Geochim Cosmochim Acta 34:529-551 

van Zeggeren F, Storey SH (1970) The Computation of Chemical 
Equilibrium. Cambridge Univ Press, London, p 176 

White WB, Johnson SM, Dantzig GB (1958) Chemical equilibrium 
in complex mixtures. J Chem Phys 28:751-755 

Wolery TJ (1979) Calculation of Chemical Equilibrium Between 
Aqueous Solutions and Minerals: The EQ3/6 Software Pack- 
age. Lawrence Livermore Laboratory Document UCRL-52658, 
p 41 

Received September 19, 1984 / Accepted February 19, 1985 


